martes, 19 de mayo de 2020

Webkiller Tool | Information Gathering | Github

Continue reading

USE OF CRYPTOGRAPHY IN HACKING

WHAT IS CRYPTOGRAPHY?

The Cryptography is derived from the Greek words "Kryptos". This is the study of secure communication techniques that allow only the sender and recipient of a message to view it's contents of transforming information into nonhuman readable form or vice versa is called cryptography.

As we know that information plays a vital role in running of any business and organizations etc, sensitive details in the wrong hands can leads to loss of business.

Cryptography is the science of ciphering and deciphering messages.To secure communication organizations use cryptology to cipher information .

                            Or

Cryptography is a method of protecting information and communication through the use of codes so that only those whom the information is intended can read and process it.

In Computer Science, Cryptography refers to secure information and communication techniques derived from mathematical concepts , a set of rule based calculations called algorithm to transform message in ways the hard to readable for human.

This is one of the secure way of communications for a hacker with the help of virtual private network(VPN) like Tor Browser which is also very helpful to change the IP Address(Location of the sender ) for illegal purpose to perform crime in cyberspace . I will discuss in brief about the VPN .



How to Encrypt and Decrypt the text in Cryptography?

Open this website with the help of internert surfing for encryption-"http://wwwmd5online.org" 

Open the link for Decrypt the code text-"http://www.md5online.org/md5-decrypt.html"

Type whatever you want for encryption and it will crypt in the code form, copy that code and forward to the intended person whom you want for secure communication and then he/she will Decrypt in the real form.




               
       







Read more

lunes, 18 de mayo de 2020

Practical Bleichenbacher Attacks On IPsec IKE

We found out that reusing a key pair across different versions and modes of IPsec IKE can lead to cross-protocol authentication bypasses, enabling the impersonation of a victim host or network by attackers. These vulnerabilities existed in implementations by Cisco, Huawei, and others.

This week at the USENIX Security conference, I will present our research paper on IPsec attacks: The Dangers of Key Reuse: Practical Attacks on IPsec IKE written by Martin Grothe, Jörg Schwenk, and me from Ruhr University Bochum as well as Adam Czubak and Marcin Szymanek from the University of Opole [alternative link to the paper]. This blog post is intended for people who like to get a comprehensive summary of our findings rather than to read a long research paper.

IPsec and Internet Key Exchange (IKE)

IPsec enables cryptographic protection of IP packets. It is commonly used to build VPNs (Virtual Private Networks). For key establishment, the IKE protocol is used. IKE exists in two versions, each with different modes, different phases, several authentication methods, and configuration options. Therefore, IKE is one of the most complex cryptographic protocols in use.

In version 1 of IKE (IKEv1), four authentication methods are available for Phase 1, in which initial authenticated keying material is established: Two public key encryption based methods, one signature based method, and a PSK (Pre-Shared Key) based method.

Attacks on IKE implementations

With our attacks we can impersonate an IKE device: If the attack is successful, we share a set of (falsely) authenticated symmetric keys with the victim device, and can successfully complete the handshake – this holds for both IKEv1 and IKEv2. The attacks are based on Bleichenbacher oracles in the IKEv1 implementations of four large network equipment manufacturers: Cisco, Huawei, Clavister, and ZyXEL. These Bleichenbacher oracles can also be used to forge digital signatures, which breaks the signature based IKEv1 and IKEv2 variants. Those who are unfamiliar with Bleichenbacher attacks may read this post by our colleague Juraj Somorovsky for an explanation.

The affected hardware test devices by Huawei, Cisco, and ZyXEL in our network lab.

We show that the strength of these oracles is sufficient to break all handshake variants in IKEv1 and IKEv2 (except those based on PSKs) when given access to powerful network equipment. We furthermore demonstrate that key reuse across protocols as implemented in certain network equipment carries high security risks.

We additionally show that both PSK based modes can be broken with an offline dictionary attack if the PSK has low entropy. Such an attack was previously only documented for one of those modes (edit: see this comment). We thus show attacks against all authentication modes in both IKEv1 and IKEv2 under reasonable assumptions.

The relationship between IKEv1 Phase 1, Phase 2, and IPsec ESP. Multiple simultaneous Phase 2 connections can be established from a single Phase 1 connection. Grey parts are encrypted, either with IKE derived keys (light grey) or with IPsec keys (dark grey). The numbers at the curly brackets denote the number of messages to be exchanged in the protocol.

Where's the bug?

The public key encryption (PKE) based authentication mode of IKE requires that both parties exchanged their public keys securely beforehand (e. g. with certificates during an earlier handshake with signature based authentication). RFC 2409 advertises this mode of authentication with a plausibly deniable exchange to raise the privacy level. In this mode, messages three and four of the handshake exchange encrypted nonces and identities. They are encrypted using the public key of the respective other party. The encoding format for the ciphertexts is PKCS #1 v1.5.

Bleichenbacher attacks are adaptive chosen ciphertext attacks against RSA-PKCS #1 v1.5. Though the attack has been known for two decades, it is a common pitfall for developers. The mandatory use of PKCS #1 v1.5 in the PKE authentication methods raised suspicion of whether implementations resist Bleichenbacher attacks.

PKE authentication is available and fully functional in Cisco's IOS operating system. In Clavister's cOS and ZyXEL's ZyWALL USG devices, PKE is not officially available. There is no documentation and no configuration option for it and it is therefore not fully functional. Nevertheless, these implementations processed messages using PKE authentication in our tests.

Huawei implements a revised mode of the PKE mode mentioned in the RFC that saves one private key operation per peer (we call it RPKE mode). It is available in certain Huawei devices including the Secospace USG2000 series.

We were able to confirm the existence of Bleichenbacher oracles in all these implementations. Here are the CVE entries and security advisories by the vendors (I will add links once they are available):
On an abstract level, these oracles work as follows: If we replace the ciphertext of the nonce in the third handshake message with a modified RSA ciphertext, the responder will either indicate an error (Cisco, Clavister, and ZyXEL) or silently abort (Huawei) if the ciphertext is not PKCS #1 v1.5 compliant. Otherwise, the responder continues with the fourth message (Cisco and Huawei) or return an error notification with a different message (Clavister and ZyXEL) if the ciphertext is in fact PKCS #1 v1.5 compliant. Each time we learn that the ciphertext was valid, we can advance the Bleichenbacher attack one more step.

A Bleichenbacher Attack Against PKE

If a Bleichenbacher oracle is discovered in a TLS implementation, then TLS-RSA is broken since one can compute the Premaster Secret and the TLS session keys without any time limit on the usage of the oracle. For IKEv1, the situation is more difficult: Even if there is a strong Bleichenbacher oracle in PKE and RPKE mode, our attack must succeed within the lifetime of the IKEv1 Phase 1 session, since a Diffie-Hellman key exchange during the handshake provides an additional layer of security that is not present in TLS-RSA. For example, for Cisco this time limit is currently fixed to 60 seconds for IKEv1 and 240 seconds for IKEv2.

To phrase it differently: In TLS-RSA, a Bleichenbacher oracle allows to perform an ex post attack to break the confidentiality of the TLS session later on, whereas in IKEv1 a Bleichenbacher oracle only can be used to perform an online attack to impersonate one of the two parties in real time.

Bleichenbacher attack against IKEv1 PKE based authentication.

The figure above depicts a direct attack on IKEv1 PKE:
  1. The attackers initiate an IKEv1 PKE based key exchange with Responder A and adhere to the protocol until receiving the fourth message. They extract the encrypted nonce from this message, and record the other public values of the handshake.
  2. The attackers keep the IKE handshake with Responder A alive as long as the responder allows. For Cisco and ZyXEL we know that handshakes are cancelled after 60 seconds, Clavister and Huawei do so after 30 seconds.
  3. The attackers initiate several parallel PKE based key exchanges to Responder B.
    • In each of these exchanges, they send and receive the first two messages according to the protocol specifications.
    • In the third message, they include a modified version of the encrypted nonce according to the the Bleichenbacher attack methodology.
    • They wait until they receive an answer or they can reliably determine that this message will not be sent (timeout or reception of a repeated second handshake message).
  4. After receiving enough answers from Responder B, the attackers can compute the plaintext of the nonce.
  5. The attackers now have all the information to complete the key derivation and the handshake. They thus can impersonate Responder B to Responder A.

Key Reuse

Maintaining individual keys and key pairs for each protocol version, mode, and authentication method of IKE is difficult to achieve in practice. It is oftentimes simply not supported by implementations. This is the case with the implementations by Clavister and ZyXEL, for example. Thus, it is common practice to have only one RSA key pair for the whole IKE protocol family. The actual security of the protocol family in this case crucially depends on its cross-ciphersuite and cross-version security. In fact, our Huawei test device reuses its RSA key pair even for SSH host identification, which further exposes this key pair.

A Cross-Protocol Version Attack with Digital Signature Based Authentication

Signature Forgery Using Bleichenbacher's Attack

It is well known that in the case of RSA, performing a decryption and creating a signature is mathematically the same operation. Bleichenbacher's original paper already mentioned that the attack could also be used to forge signatures over attacker-chosen data. In two papers that my colleagues at our chair have published, this has been exploited for attacks on XML-based Web Services, TLS 1.3, and Google's QUIC protocol. The ROBOT paper used this attack to forge a signature from Facebook's web servers as proof of exploitability.

IKEv2 With Digital Signatures

Digital signature based authentication is supported by both IKEv1 and IKEv2. We focus here on IKEv2 because on Cisco routers, an IKEv2 handshake may take up to four minutes. This more relaxed timer compared to IKEv1 makes it an interesting attack target.

I promised that this blogpost will only give a comprehensive summary, therefore I am skipping all the details about IKEv2 here. It is enough to know that the structure of IKEv2 is fundamentally different from IKEv1.

If you're familiar with IT-security, then you will believe me that if digital signatures are used for authentication, it is not particularly good if an attacker can get a signature over attacker chosen data. We managed to develop an attack that exploits an IKEv1 Bleichenbacher oracle at some peer A to get a signature that can be used to break the IKEv2 authentication at another peer B. This requires that peer A reuses its key pair for IKEv2 also for IKEv1. For the details, please read our paper [alternative link to the paper].

Evaluation and Results

For testing the attack, we used a Cisco ASR 1001-X router running IOS XE in version 03.16.02.S with IOS version 15.5(3)S2. Unfortunately, Cisco's implementation is not optimized for throughput. From our observations we assume that all cryptographic calculations for IKE are done by the device's CPU despite it having a hardware accelerator for cryptography. One can easily overload the device's CPU for several seconds with a standard PC bursting handshake messages, even with the default limit for concurrent handshakes. And even if the CPU load is kept below 100 %, we nevertheless observed packet loss.

For the decryption attack on Cisco's IKEv1 responder, we need to finish the Bleichenbacher attack in 60 seconds. If the public key of our ASR 1001-X router is 1024 bits long, we measured an average of 850 responses to Bleichenbacher requests per second. Therefore, an attack must succeed with at most 51,000 Bleichenbacher requests.

But another limit is the management of Security Associations (SAs). There is a global limit of 900 Phase 1 SAs under negotiation per Cisco device in the default configuration. If this number is exceeded, one is blocked. Thus, one cannot start individual handshakes for each Bleichenbacher request to issue. Instead, SAs have to be reused as long as their error counter allows. Furthermore, establishing SAs with Cisco IOS is really slow. During the attack, the negotiations in the first two messages of IKEv1 require more time than the actual Bleichenbacher attack.

We managed to perform a successful decryption attack against our ASR 1001-X router with approximately 19,000 Bleichenbacher requests. However, due to the necessary SA negotiations, the attack took 13 minutes.

For the statistics and for the attack evaluation of digital signature forgery, we used a simulator with an oracle that behaves exactly as the ones by Cisco, Clavister, and ZyXEL. We found that about 26% of attacks against IKEv1 could be successful based on the cryptographic performance of our Cisco device. For digital signature forgery, about 22% of attacks could be successful under the same assumptions.

Note that (without a patched IOS), only non-cryptographic performance issues prevented a succesful attack on our Cisco device. There might be faster devices that do not suffer from this. Also note that a too slow Bleichenbacher attack does not permanently lock out attackers. If a timeout occurs, they can just start over with a new attack using fresh values hoping to require fewer requests. If the victim has deployed multiple responders sharing one key pair (e. g. for load balancing), this could also be leveraged to speed up an attack.

Responsible Disclosure

We reported our findings to Cisco, Huawei, Clavister, and ZyXEL. Cisco published fixes with IOS XE versions 16.3.6, 16.6.3, and 16.7.1. They further informed us that the PKE mode will be removed with the next major release.

Huawei published firmware version V300R001C10SPH702 for the Secospace USG2000 series that removes the Bleichenbacher oracle and the crash bugs we identified. Customers who use other affected Huawei devices will be contacted directly by their support team as part of a need-to-know strategy.

Clavister removed the vulnerable authentication method with cOS version 12.00.09. ZyXEL responded that our ZyWALL USG 100 test device is from a legacy model series that is end-of-support. Therefore, these devices will not receive a fix. For the successor models, the patched firmware version ZLD 4.32 (Release Notes) is available.

FAQs

  • Why don't you have a cool name for this attack?
    The attack itself already has a name, it's Bleichenbacher's attack. We just show how Bleichenbacher attacks can be applied to IKE and how they can break the protocol's security. So, if you like, call it IPsec-Bleichenbacher or IKE-Bleichenbacher.
  • Do you have a logo for the attack?
    No.
  • My machine was running a vulnerable firmware. Have I been attacked?
    We have no indication that the attack was ever used in the wild. However, if you are still concerned, check your logs. The attack is not silent. If your machine was used for a Bleichenbacher attack, there should be many log entries about decryption errors. If your machine was the one that got tricked (Responder A in our figures), then you could probably find log entries about unfinished handshake attempts.
  • Where can I learn more?
    First of all, you can read the paper [alternative link to the paper]. Second, you can watch the presentation, either live at the conference or later on this page.
  • What else does the paper contain?
    The paper contains a lot more details than this blogpost. It explains all authentication methods including IKEv2 and it gives message flow diagrams of the protocols. There, we describe a variant of the attack that uses the Bleichenbacher oracles to forge signatures to target IKEv2. Furthermore, we describe the quirks of Huawei's implementation including crash bugs that could allow for Denial-of-Service attacks. Last but not least, it describes a dictionary attack against the PSK mode of authentication that is covered in a separate blogpost.

Media Coverage, Blogs, and more

English

German

More articles


HaCode - FUD Backdoor Generator / Remote Administration Tool

More info


  1. Hacking Wallpaper
  2. Libros Hacking Pdf
  3. Herramientas Hacking Etico
  4. Amiibo Hacking
  5. Que Es El Hacking
  6. Hacker Definicion
  7. White Hacking
  8. Significado Hacker
  9. Hacking Xbox One
  10. Curso Hacker
  11. Hacking In Spanish
  12. Hacking Udemy
  13. Hacking Wifi Windows
  14. Funnel Hacking Live

Raccoon - A High Performance Offensive Security Tool For Reconnaissance And Vulnerability Scanning



Offensive Security Tool for Reconnaissance and Information Gathering.

Features
  • DNS details
  • DNS visual mapping using DNS dumpster
  • WHOIS information
  • TLS Data - supported ciphers, TLS versions, certificate details, and SANs
  • Port Scan
  • Services and scripts scan
  • URL fuzzing and dir/file detection
  • Subdomain enumeration - uses Google Dorking, DNS dumpster queries, SAN discovery, and brute-force
  • Web application data retrieval:
    • CMS detection
    • Web server info and X-Powered-By
    • robots.txt and sitemap extraction
    • Cookie inspection
    • Extracts all fuzzable URLs
    • Discovers HTML forms
    • Retrieves all Email addresses
  • Detects known WAFs
  • Supports anonymous routing through Tor/Proxies
  • Uses asyncio for improved performance
  • Saves output to files - separates targets by folders and modules by files

Roadmap and TODOs
  • Support multiple hosts (read from the file)
  • Rate limit evasion
  • OWASP vulnerabilities scan (RFI, RCE, XSS, SQLi etc.)
  • SearchSploit lookup on results
  • IP ranges support
  • CIDR notation support
  • More output formats

About
A raccoon is a tool made for reconnaissance and information gathering with an emphasis on simplicity.
It will do everything from fetching DNS records, retrieving WHOIS information, obtaining TLS data, detecting WAF presence and up to threaded dir busting and subdomain enumeration. Every scan outputs to a corresponding file.
As most of Raccoon's scans are independent and do not rely on each other's results, it utilizes Python's asyncio to run most scans asynchronously.
Raccoon supports Tor/proxy for anonymous routing. It uses default wordlists (for URL fuzzing and subdomain discovery) from the amazing SecLists repository but different lists can be passed as arguments.
For more options - see "Usage".

Installation
For the latest stable version:
pip install raccoon-scanner
Or clone the GitHub repository for the latest features and changes:
git clone https://github.com/evyatarmeged/Raccoon.git
cd Raccoon
python raccoon_src/main.py

Prerequisites
Raccoon uses Nmap to scan ports as well as utilizes some other Nmap scripts and features. It is mandatory that you have it installed before running Raccoon.
OpenSSL is also used for TLS/SSL scans and should be installed as well.

Usage
Usage: raccoon [OPTIONS]

Options:
--version Show the version and exit.
-t, --target TEXT Target to scan [required]
-d, --dns-records TEXT Comma separated DNS records to query.
Defaults to: A,MX,NS,CNAME,SOA,TXT
--tor-routing Route HTTP traffic through Tor (uses port
9050). Slows total runtime significantly
--proxy-list TEXT Path to proxy list file that would be used
for routing HTTP traffic. A proxy from the
list will be chosen at random for each
request. Slows total runtime
--proxy TEXT Proxy address to route HTTP traffic through.
Slows total runtime
-w, --wordlist TEXT Path to wordlist that would be used for URL
fuzzing
-T, --threads INTEGER Number of threads to use for URL
Fuzzing/Subdomain enumeration. Default: 25
--ignored-response-codes TEXT Comma separated list of HTTP status code to
ignore for fuzzing. Defaults to:
302,400,401,402,403,404,503,504
--subdomain-list TEXT Path to subdomain list file that would be
used for enumeration
-S, --scripts Run Nmap scan with -sC flag
-s, --services Run Nmap scan with -sV flag
-f, --full-scan Run Nmap scan with both -sV and -sC
-p, --port TEXT Use this port range for Nmap scan instead of
the default
--tls-port INTEGER Use this port for TLS queries. Default: 443
--skip-health-check Do not test for target host availability
-fr, --follow-redirects Follow redirects when fuzzing. Default: True
--no-url-fuzzing Do not fuzz URLs
--no-sub-enum Do not bruteforce subdomains
-q, --quiet Do not output to stdout
-o, --outdir TEXT Directory destination for scan output
--help Show this message and exit.

Screenshots

HTB challenge example scan:




Results folder tree after a scan:



More info
  1. Hacker Blanco
  2. Hacking For Dummies
  3. Hacking Hardware Tools
  4. Wordpress Hacking
  5. Hacking Aves
  6. Que Es El Hacking
  7. Hacking Growth Pdf
  8. Manual Del Hacker
  9. Hacking Forums
  10. Wifi Hacking App
  11. Hacker Blanco
  12. Hacking Online Games
  13. Libros Para Aprender A Hackear
  14. Master Hacking Etico
  15. Mind Hacking

domingo, 17 de mayo de 2020

How To Install And Run Backtrack On Android

Guide you step by step to How to install and run Backtrack on android. As the Backtrack is also available with ARM architecture which makes it possible to run Backtrack on an ARM machine such as mobiles or tablets.
Recently, We are discussed Install and Run BackTrack on Windows. Android is the best OS for penetration testing. It designed for digital forensics and penetration testing or hacking tool. It comes with many more updated tools. As the Backtrack is also available with ARM architecture which makes it possible to run Backtrack on an ARM machine such as mobiles or tablets.
How To Install and Run Backtrack On AndroidRequirements
Step to Install and Run Backtrack On Android:
First of all extract the BT5-GNOME-ARM.7z. and copy the "BT5" folder and then put in your phone's root directory. Here mine phone is /sdcard. The root directory is different for different mobile devices.
  • Now install all the above apps BusyboxAndroid TerminalAndroid Vnc.
  • After installing BusyBox application open it and wait until it finishes loading and then click on Smart install.
  • Now open the android terminal and type the following command:
    su cd /sdcard/BT5sh bootbtNOTE :- When you type su in terminal it will ask you for superuser request and you have to tap on Grant.
  • After this, type the following commands in terminal.
    export USER=rootvncpasswd
  • After entering vncpasswd the terminal will ask you to enter the password. Enter the desired password and hit enter.
  • Now type the following commands.
    tightvncserver -geometry 1280×720
  • The terminal emulator will create the localhost to connect it to VNC server. Now note the localhost port marked red below. Now minimize the terminal emulator.
  • Open the Android VNC and type the following settings.
Nickname : BT5
Password : your password here which you entered in terminal (step no.6)
Address : localhost
Port : 5906
NOTE: Make sure that your localhost's port matches with terminal's localhost. Here mine New 'X' desktop is localhost:6. You may be different. So, in VNC type Port 590X where the "X" is the localhost in the android terminal.
That's it now just tap on connect to run the Backtrack on your android. So in this way you successfully install and run backtrack 5 on android. If you face any problem feel free to discuss in below comments!

More information


sábado, 16 de mayo de 2020

Social Engineering Pentest Professional(SEPP) Training Review

Intro:
I recently returned from the new Social Engineering training provided by Social-Engineer.org in the beautiful city of Seattle,WA, a state known for sparkly vampires, music and coffee shop culture.  As many of you reading this article, i also read the authors definitive book Social Engineering- The art of human hacking and routinely perform SE engagements for my clients. When i heard that the author of the aforementioned book was providing training i immediately signed up to get an in person glance at the content provided in the book. However, i was pleasantly surprised to find the course covered so much more then what was presented in the book.

Instructors:



I wasn't aware that there would be more then one instructor and was extremely happy with the content provided by both instructors. Chris and Robin both have a vast amount of knowledge and experience in the realm of social engineering.  Each instructor brought a different angle and use case scenario to the course content. Robin is an FBI agent in charge of behavioral analysis and uses social engineering in his daily life and work to get the results needed to keep our country safe. Chris uses social engineering in his daily work to help keep his clients secure and provides all sorts of free learning material to the information security community through podcasts and online frameworks.



Course Material and Expectation: 
I originally thought that the material covered in class would be a live reiteration of the material covered in Chris's book. However, I couldn't have been more wrong !!  The whole first day was about reading yourself and other people, much of the material was what Robin uses to train FBI agents in eliciting information from possible terrorist threats. Each learning module was based on live demo's, nightly labs, and constant classroom interaction. Each module was in depth and the level of interaction between students was extremely useful and friendly. I would say the instructors had as much fun as the students learning and sharing social techniques and war stories.
The class was heavily made up of ways to elicit personal and confidential information in a way that left the individuatial "Happier for having met you".  Using language, body posture and social truisms as your weapon to gather information, not intended for your ears, but happily leaving the tongue of your target.
Other class activities and materials included an in depth look at micro expressions with labs and free extended learning material going beyond the allotted classroom days.  Also break out sessions which focused on creating Phone and Phishing scripts to effectively raise your rate of success. These sessions were invaluable at learning to use proper language techniques on the phone and in email to obtain your objectives.

Nightly Missions/Labs: 
If you think that you are going to relax at night with a beer. Think again!! You must ensure that your nights are free, as you will be going on missions to gain information from live targets at venues of your choice.  Each night you will have a partner and a mission to gain certain information while making that persons day better then it started.  The information  you are requested to obtain will change each night and if done properly you will notice all of the material in class starting to unfold.. When you get to body language training you will notice which targets are open and when its best to go in for the kill. You will see interactions change based on a persons change in posture and facial expressions. Each day you will take the new techniques you have learned and put them into practice. Each morning you have to report your findings to the class..
During my nightly labs i obtained information such as door codes to secured research facilities, information regarding secret yet to be released projects.  On the lighter side of things i obtained much personal information from my targets along with phone numbers and invitations for further hangouts and events. I made many new friends inside and outside of class.
There were also labs within the confines of the classroom such as games used to solidify your knowledge and tests to figure out what kind of learner you are. Technical labs on the use of information gathering tools and ways to use phone and phishing techniques to your advantage via linguistically and technologically. Essentially the class was about 60% interaction and labs.


Proof it works:
After class i immediately had a phishing and phone based contract at my current employment. I used the email and phone scripts that we created in class with 100% click rate and 100% success in phone elicitation techniques. Gaining full unfettered access to networks through phone and email elicitation and interaction. Although I do generally have a decent SE success rate, my rates on return are now much higher and an understanding of what works and what doesn't, and why are much more refined.


Conclusion and Certification:
I paid for this class out of pocket, including all expenses, hotels, rentals cars and planes etc etc. I would say that the class was worth every penny in which i paid for it. Many extras were given including black hat passes, extended training from notable sources and continued interaction from instructors after class ended. I would highly recommend this class to anyone looking for a solid foundation in social engineering or a non technical alternative to training.  You will learn a lot, push yourself in new ways and have a blast doing it. However I did not see any sparkly vampires while in seattle.... Twilight lied to me LOL
The certification is a 48 hour test in which you will utilize your knowledge gained technologically and socially to breach a company.I am not going to give away to much information about the certification as i haven't taken it yet and I do not want to misspeak on the subject. However I will say that social-engineer.org has done an excellent job at figuring out a way to include Real World Social Engineering into a test with verifiable proof of results. I am going to take my test in a couple weeks and it should be a blast!!!

Thanks and I hope this review is helpful to all those looking for SE training.  I had a blast :) :)Related links
  1. Herramientas Hacking Etico
  2. Hacker En Español
  3. El Hacker Pelicula
  4. Defcon Hacking
  5. Curso Hacking Gratis
  6. Paginas Para Hackear